Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764582

RESUMO

The coupling between the quantum dots (QDs) and silicon-based microdisk resonator facilitates enhancing the light-matter interaction for the novel silicon-based light source. However, the typical circular microdisks embedded with Ge QDs still have several issues, such as wide spectral bandwidth, difficult mode selection, and low waveguide coupling efficiency. Here, by a promising structural modification based on the mature nanosphere lithography (NSL), we fabricate a large area hexagonal microdisk array embedded with Ge QDs in order to enhance the near-infrared light emissions by a desired whispering gallery modes (WGMs). By comparing circular microdisks with comparable sizes, we found the unique photoluminescence enhancement effect of hexagonal microdisks for certain modes. We have confirmed the WGMs which are supported by the microdisks and the well-correlated polarized modes for each resonant peak observed in experiments through the Finite Difference Time Domain (FDTD) simulation. Furthermore, the unique enhancement of the TE5,1 mode in the hexagonal microdisk is comparatively analyzed through the simulation of optical field distribution in the cavity. The larger enhanced region of the optical field contains more effectively coupled QDs, which significantly enhances the PL intensity of Ge QDs. Our findings offer a promising strategy toward a distinctive optical cavity that enables promising mode manipulation and enhancement effects for large-scale, cost-effective photonic devices.

2.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684985

RESUMO

Broadband near-infrared (NIR) luminescent materials have been continuously pursued as promising candidates for optoelectronic devices crucial for wide applications in night vision, environment monitoring, biological imaging, etc. Here, graded GexSi1-x (x = 0.1-0.3) alloys are grown on micro-hole patterned Si(001) substrates. Barn-like islands and branch-like nanostructures appear at regions in-between micro-holes and the sidewalls of micro-holes, respectively. The former is driven by the efficient strain relation. The latter is induced by the dislocations originating from defects at sidewalls after etching. An extensive broadband photoluminescence (PL) spectrum is observed in the NIR wavelength range of 1200-2200 nm. Moreover, the integrated intensity of the PL can be enhanced by over six times in comparison with that from the reference sample on a flat substrate. Such an extensively broad and strong PL spectrum is attributed to the coupling between the emissions of GeSi alloys and the guided resonant modes in ordered micro-holes and the strain-enhanced decomposition of alloys during growth on the micro-hole patterned substrate. These results demonstrate that the graded GexSi1-x alloys on micro-hole pattered Si substrates may have great potential for the development of innovative broadband NIR optoelectronic devices, particularly to realize entire systems on a Si chip.

3.
ACS Nano ; 15(8): 13703-13711, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34286957

RESUMO

Artificial graphene (AG) based on a honeycomb lattice of semiconductor quantum dots (QDs) has been of great interest for exploration and applications of massless Dirac Fermions in semiconductors thanks to the tunable interplay between the carrier interactions and the honeycomb topology. Here, an innovative strategy to realize AG on Si substrates is developed by fabricating a honeycomb lattice of Au nanodisks on a Si/GeSi quantum well. The lateral potential modulation induced by the nanoscale Au/Si Schottky junction results in the formation of quantum dots arranged in a honeycomb lattice to form AG. Nonlinear current-voltage curves of the AG reveal conductance phase transitions with switch on/off voltages, a large electric hysteresis loop, and a strong sharp current peak accompanied by a group of differential-conductance peaks and negative differential conductance around the switch-on voltage, which can be modulated by temperature and light. These features are interpreted by a model based on the Coulomb blockade effect, the collective resonant tunneling, and the coupling of holes in the AG. Our results not only demonstrate an approach to the formation but also will greatly stimulate the characterizations and the applications of innovative semiconductor-based AG.

4.
Small ; 16(26): e2000239, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510822

RESUMO

Whispering gallery mode (WGM) microresonators have been used as optical sensors in fundamental research and practical applications. The majority of WGM sensors are passive resonators that require complex systems, thereby limiting their practicality. Active resonators enable the remote excitation and collection of WGM-modulated fluorescence spectra, without requiring complex systems, and can be used as alternatives to passive microresonators. This paper demonstrates an active microresonator, which is a microdisk laser in a hyperboloid-drum (HD) shape. The HD microdisk lasers are a combination of a rhodamine B-doped photoresist and a silica microdisk. These HD microdisk lasers can be utilized for the detection of label-free biomolecules. The biomolecule concentration can be as low as 1 ag mL-1 , whereas the theoretical detection limit of the biosensor for human IgG in phosphate buffer saline is 9 ag mL-1 (0.06 aM ). Additionally, the biosensors are able to detect biomolecules in an artificial serum, with a theoretical detection limit of 9 ag mL-1 (0.06 aM ). These results are approximately four orders of magnitude more sensitive than those for the typical active WGM biosensors. The proposed HD microdisk laser biosensors show enormous detection potential for biomarkers in protein secretions or body fluids.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G , Lasers , Técnicas Biossensoriais/instrumentação , Humanos , Imunoglobulina G/análise , Sensibilidade e Especificidade , Dióxido de Silício
5.
Nanoscale ; 12(24): 13137-13144, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32584338

RESUMO

Self-assembled Ge-rich quantum dots (QDs) can not only act as a prototype model for the fundamental studies of heteroepitaxial growth but also have great potential in optoelectronic devices for telecommunication and monolithic optical-electronic integrated circuits. Here, we report the unique features of Ge-rich QDs ultra-heavily doped with phosphorus (P) and embedded in a thin SiGe alloy film on Si (001) substrates. The ultra-heavy P doping considerably reduces the size of Ge-rich QDs and improves their uniformity. The inherent mechanism is associated with the reductions of both surface energy and the diffusion length of adatoms during QD growth promoted by the P dopants. Raman spectra indicate that the Ge content and strain in QDs are essentially not modified by the P doping. Particularly, the power- and temperature-dependent photoluminescence (PL) spectra demonstrate a type-I band alignment of Ge-rich QDs/SiGe alloy film due to the ultra-heavy P doping, which gives rise to additional low energy levels of electrons in QDs. Moreover, the PL of Ge-rich QDs is remarkably enhanced by ultra-heavy P doping at temperatures over 80 K. Over 3 times enhancement is obtained at 245 K. These results indicate that the overall quantum efficiency of Ge-rich QDs is substantially improved by the ultra-heavy P doping, which facilitates the applications of Ge-rich QDs in Si-based innovative optoelectronic devices.

6.
Opt Express ; 28(11): 16151-16162, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549443

RESUMO

Ordered micro-holes with controllable period, diameter and depth are fabricated in Si (001) substrates via a feasible approach based on nanosphere lithography. They dramatically reduce the reflectance in a broad wavelength range of 400-1000 nm, which can be deliberately modulated by tailoring their geometrical parameters. The simulated reflectance via finite-difference time-domain (FDTD) method agrees well with the experimental data. The FDTD simulations also demonstrate substantially enhanced light absorption of a Si thin film with ordered micro-holes. Particularly, the light-filled distributions around micro-holes disclose fundamental features of two types of modes, channel modes and guided modes, involving the wavelength-dependence, the origin, the dominant location region and the interference pattern of the light field around micro-holes. Our results not only provide insights into the antireflection and the substantially enhanced absorption of light by ordered micro-holes, but also open a door to optimizing micro-hole arrays with desired light field distributions for innovative device applications.

7.
Nanoscale ; 11(33): 15487-15496, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211306

RESUMO

Si-Based microdisks with Ge quantum dots (QDs) have been of great interest due to their potential as the desired light source for monolithic optical-electronic integrated circuits (MOEICs), as well as in the studies of cavity quantum electrodynamics (CQED). Here, we report on unique SiGe nanodisk arrays with embedded Ge QDs directly realized on bulk Si substrates. Their superior optoelectronic properties are demonstrated by remarkably enhanced photoluminescence due to the coupling between QD emissions and cavity modes of the nanodisk, even though the size of the nanodisk is much smaller than the wavelengths of cavity modes. Moreover, spectral shifts of cavity modes and an intensity modulation related to the interference of in-phase emissions from QDs in the nanodisk array are observed due to alternative coupling between nanodisks. A hybridized mode, originating from the spectral overlap between the anapole mode of individual nanodisks and the guided mode of periodic nanodisks, results in strong luminescence even at room temperature. Our results shed new light on the fundamental physics of CQED in nanodisk arrays with embedded QDs. Given their superior optoelectronic properties, the feasibility of carrier injection and thermal dissipation through the Si pedestal, the presented SiGe nanodisks with embedded Ge QDs will have great potential for application in innovative optoelectronic devices, particularly as the light source for MOEICs.

8.
Nanotechnology ; 29(34): 345606, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29863488

RESUMO

A feasible route is developed toward precise site-controlling of quantum dots (QDs) at the microdisk periphery, where most microdisk cavity modes are located. The preferential growth of self-assembled Ge QDs at the periphery of Si microdisks is discovered. Moreover, both the height and linear density of Ge QDs can be controlled by tuning the amount of deposited Ge and the microdisk size. The inherent mechanisms of these unique features are discussed, taking into account both the growth kinetics and thermodynamics. By growing Ge on the innovative Si microdisks with small protrusions at the disk periphery, the positioning of Ge QDs at the periphery can be exactly predetermined. Such a precise site-controlling of Ge QDs at the periphery enables the location of the QD right at the field antinodes of the cavity mode of the Si microdisk, thereby achieving spatial matching between QD and cavity mode. These results open a promising door to realize the semiconductor QD-microdisk systems with both spectral and spatial matching between QDs and microdisk cavity modes, which will be the promising candidates for exploring the fundamental features of cavity quantum electrodynamics and the innovative optoelectronic devices based on strong light-matter interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...